CONDITION MONITORING OF
MARINE MACHINERY USING
ARTIFICIAL INTELLIGENCE

o~

Section A Introduction to Artificial Intelligence and
applications

History of Al

Objectives of Al

Subfields of Al

Uses and application of Al

Section A Introduction to Artificial Intelligence and

applications
1955- Allen Newell and Herbert A. Simon created "Logic Theorist"

1956 - John McCarthy coined the term ‘artificial intelligence’ and had the first Al
conference

1974 to 1993 - Two Al Winters and a Boom in Al
1993 to 2011- The emergence of big data

2011 to present - Highly intelligent agents

Objectives of Al

1. Solve complex problems faster
2. Use lesser computation than conventional techniques for problem solving

3. Complete complex tasks and reduce the amount of time needed to perform
specific tasks

4. Facilitate human-computer interaction

S

Subfields of Al

Machine learning

Deep learning

Natural language processing
Cognitive computing
Computer vision

Fuzzy logic

Use of Al

1. Used to reduce or avoid repetitive tasks.
2. Toimprove an existing product

3. Used in industries, from marketing to supply chain, finance, food-processing
sector.

Section B- Condition Based Monitoring and scheduled

monitoring
Sensors

Sensors used in marine machinery

Data collection

Condition monitoring

Sensors to check the health of a machine
Digital twin

SRS O o

Sensors

Produces an output signal for the purpose of sensing a physical phenomenon.

Acceleration/Tilt %ﬁ. @ Ultrasounds/Radio

2
@ Vibration
¥ RFID/NFC

9 Position/Proximity : 7% /
' ! 8%
I? c. Chemical/Gas

‘))) Acoustic/Sound 1%,

Magnetic

Electric (;)
w

Sensor \
Applications for a
Smarter World

Leaks/Levels

,»""' \ /
1% 4 Force/Load/
= Pressure

Ambient Light/Machine
vision/Optical i
Nt G 3 [
- Humidity/Moisture/ .

Water

Motion/Velocity/
Displacement

Temperature & @;

Source: Overview of Spintronic Sensors With Internet of Things for Smart Living. IEEE Transactions on Magnetics. PP. 10.1109/TMAG.2019.2927457.

O oo NGk~

Types of parameters for sensor measurement on

maritime vessels
Vibration and acoustic

Temperature and thermography

Pressure

Tribology

Torque

Flow rates

Contamination

Power and speed typically associated with performance
Electricity (Voltage, Current, Frequency, Harmonics)

Checking the health of a machine

Sensors monitor for abnormalities in the system and based on past data they can
correlate and estimate the current health of the system

Condition Monitoring Technologies

On-line
Parameters

Vibration

Pressure

Motor
Current Performance

Monitoning

Thermography

Source: National Instruments (https://www.ni.com/en-in/innovations/white-papers/14/sensors-for-condition-monitoring.html)

Condition monitoring

process of monitoring the parameters contributing to the ‘health’ of a machinery in

order to identify any abnormal changes from the standard values which can
indicate a potential fault that is about to occur in the future.

//>— 477‘\.
7
[SMART \ DECREASE
|\ REPLACEMENT FEANNED |
~ MAINTENANCE /

/'/

{ MONITORING : -
J A VALUE 3 DECREASE \
(S) --------- ' (@
X g LOSS y
¥o)

IMPROVE ° LOWER
WORKFORCE ..\ RISK Source:

https://www.te.com/usa-en/industries/sensor-solutions/ap
plications/industrial-condition-monitoring-sensors.html

Condition monitoring

Using Condition monitoring, each sensor offers the ability to monitor the degradation of mechanical and electrical components
within an equipment.

Some examples are as follows:

1.

wn

a s

No

Vibration sensors are used to detect roller bearing wear, gearbox wear, shaft misalignment, unbalance, and mechanical
looseness.

Speed sensors work with vibration sensors to correlate vibrations to rotating speed and shaft angular position.

Motor current sensors are commonly placed at the motor control center. They can detect eccentric rotors, loose windings,
rotor bar degradation, and electrical supply unbalance.

Dynamic pressure sensors are used for combustion dynamics, flow turbulence, and cavitations.

Temperature sensors are typically used to detect heat caused by friction. They often accompany vibration sensors to
collaborate vibration-detected degradation.

Thermal imaging detects hundreds of temperatures within the camera’s field of view.

Ultrasonic sensors can detect electrical problems including corona, arcing, and tracking. They can also be used to detect
early signs of roller bearing wear.

Oil sensors can detect wear debris from bearings and gears. They also can detect contaminants in the oil that reduce the
lubrication ability of the oil.

Digital Twin

o Virtual model designed to accurately reflect a physical object
Gather real world data
feed into the digital mode
Simulate the performance
Optimize the system
Apply the new learning

® Q0 0o

Source: https://new.abb.com/news/detail/80770/the-digital-twin-from-hype-to-reality

SRS O o

Section C-Forecasting

Forecasting

Classes of forecasting

Simple Moving average (SMA), Auto regression
How regression and MA can be used for forecasting
Data forecasting using Auto Regression

Data forecasting using ARIMA Models

Forecasting

Process of making predictions based on past and present data

Eg: Weather forecasts, Economic forecasts, Sales Forecasts etc.

WooNoahwWN =

Classes of forecasting

Qualitative vs. quantitative methods

Average approach

Drift method

Time series methods

Relational methods

Judgmental methods

Artificial intelligence methods

Geometric Extrapolation with error prediction
Regression method

Simple Moving Average (SMA)

Takes the average of the last k points to predict the n" point

SMA; =

1
k.

n

Zpi

n—k+1

1.4 -

1.2 -

1

0.8 -

0.6 -

0.4

0.2

0 -

0.2 4

0.4

0.6 4

0.8 -

-1 -

-1.2 -

1.4

l,
ki

Ml 1
Wr i

,.l,'“ ’

h

I

T T T T T T
0 05 1 15 2 25 3

T T T T T T T
35 4 45 5 55 6 6.5 7

Source: https://en.wikipedia.org/wiki/Moving_average

V.V

Auto Regression

operate under the premise that past values have an effect on current values,
which makes the statistical technique popular for analyzing nature,
economics, and other processes that vary over time.

Other models use only a linear combination of predictors

Open source codes available in python

— actual

date
Source: https://pythondata.com/forecasting-time-series-autoregression/

VVYY

Autoregressive integrated moving average (ARIMA)

Statistical analysis model that uses time series data to either better
understand the data set or to predict future trends

Uses delayed or lagged moving averages to smooth time series data
Used to make time series data stationary

Open source codes available in python

a bk~

Section D-Bad data Detection

Bad data

Bad data detection

Methods used to detect bad data
The different types of graphs
Detecting bad data from graphs

Bad data

inaccurate set of information

missing data

wrong information

inappropriate data
non-conforming data

duplicate data

poor entries (misspells, typos,
variations in spellings, format etc).

ok wnd =

Statistics

- New cases and deaths
From JHU CSSE COVID-19 Data - Last reperted: yesterday

Cases Deaths

India
30days ¥
S 8 Nov 2022
: New cases: 0
7-day avg: 811
2,000

0

8 Nov 11 Nov 18 Nov 21 Nov 28 Nov 1 Dec

New cases = 7-day average

All-time cases and deaths

Total cases Total deaths

4.47Cr 5.31L

Source: Google

Hwnh -

Bad data detection

99.7=100%

Median —
Standard Deviation 68%
. U
3 sigma rule 34.1%) 34.1%
p-value test il
13.6% 13.6%
2.1%

M-30 HM-20 H-0 I H+0 u+20 p+30

Source: Wikipedia

Hwnh -

Median

Standard Deviation
3 sigma rule
p-value test

Bad data detection

Source: Wikipedia

Section E-Introduction to Python using

Spyder-Anaconda package and practical case study
1. Use of Spyder(Anaconda) package(Open Source)

2. Syntax pertaining to Loops, Conditional statements, functions and file
handling,

3. Opening and reading the contents of a file, opening and writing/appending
data to a file

4. Plotting graphs

Case Study

6. Develop a fully fledged condition monitoring system for monitoring the health
of a marine machine

o

Loops

4.1. if Statements

Perhaps the most well-known statement type is the if statement. For example:

>>> x = int(input("Please enter an integer: "))
Please enter an integer: 42
P2 E O

Siete X =0

SOC print('Negative changed to zero')
oss elif x == O:

Soc print('Zero')

sse1elif x ==

568 print('Single’)

... else:

S0 print('More")

More

There can be zero or more elif parts, and the else part is optional. The keyword ‘elif’ is short for ‘else if’, and
is useful to avoid excessive indentation. An if ... elif ... elif ... sequence is a substitute for the switch or
case statements found in other languages.

https://docs.python.org/3/contents.html

4.1. if Statements

Perhaps the most well-known statement type is the if statement. For example:

>>> x = int(input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0O:

e X =0

GO print('Negative changed to zero')
ee. €lif x ==

505 print(‘Zero")

eo. €lif x ==

o print('Single’)

... else:

o0 print(‘More")

More

There can be zero or more elif parts, and the else part is optional. The keyword ‘elif’ is short for ‘else if’, and
is useful to avoid excessive indentation. An if ... elif ... elif ... sequence is a substitute for the switch or
case statements found in other languages.

https://docs.python.org/3/contents.html

4 2. for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always
iterating over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both
the iteration step and halting condition (as C), Python’s for statement iterates over the items of any sequence (a
list or a string), in the order that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:

«oo Words = ['cat’, 'window', ‘'defenestrate’]
>>> for w in words:

sas print(w, len(w))

cat 3

window 6

defenestrate 12

Code that modifies a collection while iterating over that same collection can be tricky to get right. Instead, it is
usually more straight-forward to loop over a copy of the collection or to create a new collection:

Create a sample collection
users = {'Hans': 'active', 'Eléonore': 'inactive', 'EAKRB': 'active'}

Strategy: Iterate over a copy
for user, status in users.copy().items():
if status == 'inactive':
del users[user]

Strategy: Create a new collection
active_users = {}
for user, status in users.items():
if status == 'active':
active_users[user] = status
https://docs.python.org/3/contents.html

4.3. The range() Function

If you do need to iterate over a sequence of numbers, the built-in function range () comes in handy. It generates
arithmetic progressions:

>>> for i in range(5):
print(i)

B WNRFE O
.

The given end point is never part of the generated sequence; range(10) generates 10 values, the legal indices
for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a
different increment (even negative; sometimes this is called the ‘step’):

>>> list(range(5, 10))
[5, 6, 7, 8, 9]

>>> list(range(0, 10, 3))
[0) 3) 6) 9]

>>> list(range(-10, -100, -30))
[-10, -40, -70]
https://docs.python.org/3/contents.html

To iterate over the indices of a sequence, you can combine range() and len() as follows:

>»> a = ['Mary', 'had', 'a', 'little’', 'lamb']
>>> for i in range(len(a)):
print(i, a[i])
Mary
had
a
little
lamb

AWN RO .

In most such cases, however, it is convenient to use the enumerate() function, see Looping Techniques.

A strange thing happens if you just print a range:

>>> range(10)
range(0, 10)

In many ways the object returned by range() behaves as if it is a list, but in fact it isn't. It is an object which
returns the successive items of the desired sequence when you iterate over it, but it doesn’t really make the list,
thus saving space.

We say such an object is iterable, that is, suitable as a target for functions and constructs that expect something
from which they can obtain successive items until the supply is exhausted. We have seen that the for statement
is such a construct, while an example of a function that takes an iterable is sum():

>>> sum(range(4)) #0 + 1 + 2 + 3
6
https://docs.python.org/3/contents:htmt

4.4. break and continue Statements, and else Clauses on Loops

The break statement, like in C, breaks out of the innermost enclosing for or while loop.

Loop statements may have an else clause; it is executed when the loop terminates through exhaustion of the
iterable (with for) or when the condition becomes false (with while), but not when the loop is terminated by a
break statement. This is exemplified by the following loop, which searches for prime numbers:

>>> for n in range(2, 10):

P for x in range(2, n):

‘e if n % x == 0:

Sisie print(n, ‘equals', x, "*', n//x)

SO0 break

ces else:

oo # Lloop fell through without finding a factor
oo print(n, 'is a prime number')

is a prime number
is a prime number
equals 2 * 2
is a prime number
equals 2 * 3
is a prime number
equals 2 * 4
equals 3 * 3

WO NOTWV A WNe.

(Yes, this is the correct code. Look closely: the else clause belongs to the for loop, not the if statement.)

When used with a loop, the else clause has more in common with the else clause of a try statement than it
does with that of if statements: a try statement's else clause runs when no exception occurs, and a loop’s
else clause runs when no break occurs. For more on the try statement and exceptions, see Handling

Exceptions. https://docs.python.org/3/contents.html

The continue statement, also borrowed from C, continues with the next iteration of the loop:

'>>> for num in range(2, 10):

oo if num % 2 ==

aiers print("Found an even number", num)
oo continue

oo print("Found an odd number", num)

Found an even number 2
Found an odd number 3
Found an even number 4
Found an odd number 5
Found an even number 6
Found an odd number 7
Found an even number 8
Found an odd number 9

https://docs.python.org/3/contents.html

5.1. More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

list.append(x)
Add an item to the end of the list. Equivalent to a[len(a):] = [x].

list.extend(iterable)
Extend the list by appending all the items from the iterable. Equivalent to a[len(a):] = iterable.

list.insert(1, x)
Insert an item at a given position. The first argument is the index of the element before which to insert, so
a.insert(@, x) inserts at the front of the list, and a.insert(len(a), x) is equivalentto a.append(x).

list. remove(x)
Remove the first item from the list whose value is equal to x. It raises a valueError if there is no such item.

list. pop([i])
Remove the item at the given position in the list, and return it. If no index is specified, a.pop() removes and
returns the last item in the list. (The square brackets around the i in the method signature denote that the
parameter is optional, not that you should type square brackets at that position. You will see this notation
frequently in the Python Library Reference.)

list.clear()

i list. i .
Romaverall it fommie Ihstttpg:gllélc\)lcasl%r)]lmgnqoeré/ﬁgoltents.html

list. index(x[, start[, end]])
Return zero-based index in the list of the first item whose value is equal to x. Raises a vValueError if there is
no such item.

The optional arguments start and end are interpreted as in the slice notation and are used to limit the search
to a particular subsequence of the list. The returned index is computed relative to the beginning of the full
sequence rather than the start argument.

list. count(x)
Return the number of times x appears in the list.

list. sort(*, key=None, reverse=False)
Sort the items of the list in place (the arguments can be used for sort customization, see sorted() for their
explanation).

list. reverse()
Reverse the elements of the list in place.

list. copy()
Return a shallow copy of the list. Equivalent to a[:].

https://docs.python.org/3/contents.html

An example that uses most of the list methods:

>>> fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', ‘'apple', 'banana']
>>> fruits.count('apple')

2

>>> fruits.count('tangerine")

0

>>> fruits.index('banana')

3

>>> fruits.index('banana', 4) # Find next banana starting a position 4
6

>>> fruits.reverse()

>>> fruits

['banana', 'apple', 'kiwi', 'banana‘’, 'pear', 'apple', ‘orange']

>>> fruits.append('grape’)

>>> fruits

['banana’, ‘'apple', 'kiwi', ‘'banana', ‘'pear', 'apple', ‘orange', 'grape']
>>> fruits.sort()

>>> fruits

['apple', ‘'apple', 'banana', 'banana’, ‘'grape’, ‘kiwi', ‘orange', 'pear']
>>> fruits.pop()

‘pear’

You might have noticed that methods like insert, remove or sort that only modify the list have no return value
printed — they return the default None. [1] This is a design principle for all mutable data structures in Python.

Another thing you might notice is that not all data can be sorted or compared. For instance, [None, 'hello’,
10] doesn'’t sort because integers can’t be compared to strings and None can’t be compared to other types.
Also, there are some types that don't have a defined ordering relation. For example, 3+4j < 5+7j isn’t a valid

comparison.
https://docs.python.org/3/contents.html

5.3. Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing and slicing operations. They are
two examples of sequence data types (see Sequence Types — list, tuple, range). Since Python is an evolving
language, other sequence data types may be added. There is also another standard sequence data type: the
tuple.

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, 'hello!’

>>> t[o]

12345

»> t

(12345, 54321, ‘hello!l")

>>> # Tuples may be nested:

seier Ui Ty (1, 2,3, 4,5)

>>>u

((12345, 54321, ‘hello!'), (1, 2, 3, 4, 5))
>>> # Tuples are immutable:

. t[e] = 83888
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: ‘'tuple' object does not support item assignment
>>> # but they can contain mutable objects:
et V= (5 250815 35 250 00)
> v
([1, 2, 3], [3, 2, 1])

As you see, on output tuples are always enclosed in parentheses, so that nested tuples are interpreted correctly;
they may be input with or without surrounding parentheses, although often parentheses are necessary anyway (if
the tuple is part of a larger expression). It is not possible to assign to the individual items of a tuple, however it is

possible to create tuples which contain mutable objects, such as lists.

Though tuples may seem similar to lists, they are often used in different situations and for different purposes.
Tuples are immutable, and usually contain a heterogeneous sequence of elements that are accessed via
unpacking (see later in this section) or indexing (or even by attribute in the case of namedtuples). Lists are
mutable, and their elements are usually homogeneous and are accessed by iterating over the list.

A special problem is the construction of tuples containing 0 or 1 items: the syntax has some extra quirks to
accommodate these. Empty tuples are constructed by an empty pair of parentheses; a tuple with one item is
constructed by following a value with a comma (it is not sufficient to enclose a single value in parentheses). Ugly,
but effective. For example:

>>> empty = ()

>>> singleton = 'hello’, # <-- note trailing comma
>>> len(empty)

0

>>> len(singleton)

1

>>> singleton

('hello',)

The statement t = 12345, 54321, 'hello!' is an example of tuple packing: the values 12345, 54321 and
'hello! " are packed together in a tuple. The reverse operation is also possible:

2> X, ¥, Z =1

This is called, appropriately enough, sequence unpacking and works for any sequence on the right-hand side.
Sequence unpacking requires that there are as many variables on the left side of the equals sign as there are
elements in the sequence. Note that multiple assignment is really just a combination of tuple packing and

sequence unpacking. https://docs.python.org/3/contents.html

7.2. Reading and Writing Files

open () returns a file object, and is most commonly used with two positional arguments and one keyword
argument: open(filename, mode, encoding=None)

>>> f = open('workfile', 'w', encoding="utf-8")

The first argument is a string containing the flename. The second argument is another string containing a few
characters describing the way in which the file will be used. mode can be 'r* when the file will only be read, 'w’
for only writing (an existing file with the same name will be erased), and *a* opens the file for appending; any
data written to the file is automatically added to the end. 'r+' opens the file for both reading and writing. The
mode argument is optional; 'r* will be assumed if it's omitted.

Normally, files are opened in text mode, that means, you read and write strings from and to the file, which are
encoded in a specific encoding. If encoding is not specified, the default is platform dependent (see open()).
Because UTF-8 is the modern de-facto standard, encoding="utf-8" is recommended unless you know that you
need to use a different encoding. Appending a 'b* to the mode opens the file in binary mode. Binary mode data
is read and written as bytes objects. You can not specify encoding when opening file in binary mode.

In text mode, the default when reading is to convert platform-specific line endings (\n on Unix, \r\n on
Windows) to just \n. When writing in text mode, the default is to convert occurrences of \n back to platform-
specific line endings. This behind-the-scenes modification to file data is fine for text files, but will corrupt binary

data like that in JPEG or EXE ﬁles.hl?tgswﬂcscg)rlt féjr!_;()cr)g%s/gokgtlgrﬁgyhmpde when reading and writing such files.

It is good practice to use the with keyword when dealing with file objects. The advantage is that the file is
properly closed after its suite finishes, even if an exception is raised at some point. Using with is also much
shorter than writing equivalent try-finally blocks:

>>> with open('workfile', encoding="utf-8") as f:
o read _data = f.read()

>>> # We can check that the file has been automatically closed.
>>> f.closed
True

If you're not using the with keyword, then you should call f.close() to close the file and immediately free up
any system resources used by it.

Warning: Calling f.write() without using the with keyword or calling f.close() might result in the
arguments of f.write() not being completely written to the disk, even if the program exits successfully.

After a file object is closed, either by a with statement or by calling f.close(), attempts to use the file object
will automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: I/0 operation on closed file.
https://docs.python.org/3/contents.htmi

7.2.1. Methods of File Objects

The rest of the examples in this section will assume that a file object called f has already been created.

To read a file’s contents, call £.read(size), which reads some quantity of data and returns it as a string (in text
mode) or bytes object (in binary mode). size is an optional numeric argument. When size is omitted or negative,
the entire contents of the file will be read and returned; it's your problem if the file is twice as large as your
machine’s memory. Otherwise, at most size characters (in text mode) or size bytes (in binary mode) are read and
returned. If the end of the file has been reached, f.read() will return an empty string (').

>>> f.read()
'This is the entire file.\n'
>>> f.read()

f.readline() reads a single line from the file; a newline character (\n) is left at the end of the string, and is only
omitted on the last line of the file if the file doesn’t end in a newline. This makes the return value unambiguous; if
f.readline() returns an empty string, the end of the file has been reached, while a blank line is represented by
‘\n', a string containing only a single newline.

>>> f.readline()

'This is the first line of the file.\n'
>>> f.readline()

'Second line of the file\n'

>>> f.readline()

https://docs.python.org/3/contents.htmi

For reading lines from a file, you can loop over the file object. This is memory efficient, fast, and leads to simple
code:

>>> for line in f:

e print(line, end="")

This is the first line of the file.
Second line of the file

If you want to read all the lines of a file in a list you can also use 1ist(f) or f.readlines().

f.write(string) writes the contents of string to the file, returning the number of characters written.

>>> f.write('This is a test\n')
15

Other types of objects need to be converted — either to a string (in text mode) or a bytes object (in binary mode)
— before writing them:

>>> value = ('the answer', 42)
>>> s = str(value) # convert the tuple to string
>>> f.write(s)

18
https://docs.python.org/3/contents:htmi

f.tell() returns an integer giving the file object’s current position in the file represented as number of bytes
from the beginning of the file when in binary mode and an opaque number when in text mode.

To change the file object’s position, use f.seek(offset, whence). The position is computed from adding offset
to a reference point; the reference point is selected by the whence argument. A whence value of 0 measures
from the beginning of the file, 1 uses the current file position, and 2 uses the end of the file as the reference
point. whence can be omitted and defaults to 0, using the beginning of the file as the reference point.

>>> f = open(‘workfile', 'rb+")

>>> f.write(b'0123456789abcdef")

16

>>> f.seek(5) # Go to the 6th byte in the file
=

>>> f.read(1)

b*5*

>>> f.seek(-3, 2) # Go to the 3rd byte before the end
13

>>> f.read(1)

b'd"

In text files (those opened without a b in the mode string), only seeks relative to the beginning of the file are
allowed (the exception being seeking to the very file end with seek(@, 2)) and the only valid offset values are
those returned from the f.tell(), or zero. Any other offset value produces undefined behaviour.

File objects have some additional methods, such as isatty() and truncate() which are less frequently used;

consult the Library Reference for a complete guide to file objects.
https://docs.python.org/3/contents.html

Case Study 1- Condition-Based Monitoring for Marine
Engine Maintenance by Analyzing Drain Cylinder Oil

6UEC60LSA engine Specifications

Engine model 6UEC60LSA
Bore (mm) 600
Stroke (mm) 1,600
Output (kW) 11,180
Engine speed (rpm) 110
Piston speed (m/s) 7.09
Engine length (mm) 7,270
Piston overhaul height (mm) 7,700
Crankshaft center (mm) 930
Bedplate width (mm) 3,000
Engine weight (Ton) 239

Sample

Maintenance decision making framework

Internal Combustion

!

—

Inlet Air humidity

Drain Cylinder Oil Sample

A\ 4

XRF analysis

A4

Machine Learning

Y

Maintenance Decision

<
-

Famakinwa, Ayo, and Tadahiro Shibutani. "Condition-Based Monitoring for Marine Engine Maintenance by Analyzing Drain

Cylinder Oil Sample." Tribology Online 17.2 (2022): 71-77.

PPM

Case Study 1

Engine output and particles quantity in oil

sample
1801
1401 4 | ogss
1201
I 9880
10.01 4
801 - 9875
6.01
F 9870
401 -
I 9865
201 A+
001 +—=—% — , , , 9860
113000 115000 117000 119000 121000 123000 125000

Engine hours

Famakinwa, Ayo, and Tadahiro Shibutani. "Condition-Based Monitoring for Marine Engine Maintenance by Analyzing Drain Cylinder Oil Sample." Tribology Online 17.2 (2022): 71-77

Output Power (kW)

Fe
——Ni
——Cu
——7n
—=—Ag
-8-Power (kW)

Wear rate (mm/1000 hrs)

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

Graphical representation of average wear rate

I ©
E @
| @
i Ny R
0.00 0.50 1.00 1.50 2.00 2.50
Fe (ppm)

3.00

Case Study 2- Sensors Specifications For Maritime
Condition Monitoring Based On Failure Mode, Effects
and Criticality Analysis (FMECA)

Sensor selection is an important step during the Condition Monitoring process. The
factors affecting the selection of a sensor can be as follows:

1. Determine the variables to be measured
Determine the technical specification of sensors for each measurement

Determine the availability and affordability of sensors

W N

Determine the installation, maintenance plan and calibration procedure of sensors

Shan Guan, Knut Erik Knutsen, and @ystein Asheim Alnes, " Condition Monitoring Based On Fmeca: A Case Study Of Sensors Specifications For Mz
proceedings of MFPT 2017, Society for Machinery Failure Prevention Technology

Case Study 2

Component Failure Modes Failure Effects Failure Criticality Sensors
Electric Overheating Short motor life to High to Very Temperature
Motor motor failure High
Frequency Temperature induced Components/ system failure, Won’t | High to Very High Thermography
Converter start
Shaft Shaft failure Components/ System failure High to Very High Vibration, Acoustic
Emission, UT
Sheared Shaft, Shaft Seized High to Very High Vibration, Acoustic Emission,
failure UT
Tooth Coupling Teeth wear away High vibration to system failure Medium to Very Vibration, Torque, Particulate
High analysis/
Wear Debris
Tooth fatigue High vibration to High Vibration,
failure system failure

Torque

Case Study 2

Rolling Bearing | Rolling contact fatigue Seized to system failure High to Very High | Vibration, Temperature, Oil analysis (off
site)/
Wear Debris
Plastic deformation Noisy/Excessive vibration, Medium to Very Vibration
Seized Motor, Loss of torque High
Bevel Gear Plastic deformation Noisy, Vibration, System Failure Medium to Very Oil analysis (off site)/ Wear
High Debris, Vibration
Tooth flank contact Vibration, System Failure Medium to Very Oil analysis (off site)/ Wear Debris,
fatigue High Vibration
Propeller Blade Fatigue failure Loss of Torque, Vibration, Medium to Very Torque, Vibration,
System Failure High Ultrasonic
Lubrication Pressure drop Components/System failure in long | Medium to Very Oil Pressure
System term High
Overheating Components/System failure in long | Medium to Very Temperature

term

High

Case Study 2

Velocity Vibration Sensors

Displacement Vibration Sensors

Accelerometers
Measuring Acceleration Velocity Displacement
Parameters
Sensing Piezoelectric Sensors Electromagnetic transducer Capacitance sensors or Eddy-
Mechanism current probe
Major Good response at high frequencies; Able Good response in middle range Non-contact, No wear;
Advantages to stand high Temperature; Small size frequencies; Able to measure both static and dynamic
Able to stand high temperature; displacements; Good response at low
Low Cost; frequencies
No external power needed.
Major Sensitive to high frequency noise; Low resonant frequency and phase Bounded by high frequencies; Sensitive to
Disadvantages Higher cost shift; Large footprint; Cross noise Electrical and mechanical noise
Wireless Commercially available Not available Possible, not yet commercially
Capability available.
MEMS-based Commercially available Not available Commercially available
devices

available

Case Study 2

Tech Specification

SLLD144S Vibration Sensor

General Vibration Sensors for Ship Machinery CM

Nominal sensitivity, main axis

100 mV/g

10-500 mV/g

Transverse sensitivity

Max. 10%

Max. 10%

Typical base strain sensitivity

0.01 m/s2/p strain

0.01-0.05 m/s2/p strain

Linear frequency range

2 Hz - 10 kHz (£1dB) (-3 dB at 0.7 Hz)

2 Hz - 10 kHz (+1dB) (-3 dB at 0.7 Hz)

Max. peak acceleration 600 m/s2=60g 100 g
Settling time 3 sec 1-5 sec
Bias point 11 to 13 V (typical 12 V) 11 to 13 V (typical 12 V)
Temperature range 40° Cto +125° C 0°Cto+175°C
Power requirements 24V /2 -5mA 5-24V (1-10 mA)

Casing

Stainless acid proof steel

Marine Environment Resist materials preferred

Isolation

Case isolated, > 1 Mohm

Case isolated, > 1 Mohm

